Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
International Journal of Thermofluids ; : 100287, 2023.
Article in English | ScienceDirect | ID: covidwho-2179441

ABSTRACT

Research in ultra-low temperature refrigeration applications has intensified in recent years after the appearance of vaccines in response to the COVID-19 pandemic. There are few current technologies for this low-temperature range, with reduced energy performance and high global warming potential refrigerants. This work analyses the introduction of the ejector in two-stage cascade cycles for ultra-low temperature refrigeration. The proposal includes the assessment of the behaviour of the ejector while implementing it in a single stage or simultaneously in both stages. The study is carried out with refrigerants R-290 in the high-temperature stage and R-170 in the low-temperature stage since these are natural refrigerants with very low global warming potential. The results show that the ejector is a component that causes improvements in the cycle when placed in the high-temperature and low-temperature stages. On the other hand, given the change in evaporation and condensation temperatures, the evaporation temperature is more critical regarding cycle energy performance. With the results obtained, a cascade cycle with an ejector in both stages is proposed, obtaining a 21% higher coefficient of performance than the standard cascade cycle. Also, the cycle with the ejector in both stages causes an improvement of 13.6 % compared to the previous generation's refrigerants (R-23 and R-507A) in the same cycle. The carbon footprint analysis shows that this cycle emits less than half of the equivalent CO2 than actual cycles for ultra-low temperatures, also with a new refrigerant like R-472A.

2.
Energy Convers Manag ; 267: 115907, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2068934

ABSTRACT

In response to the COVID-19 pandemic, some vaccines have been developed requiring ultralow-temperature refrigeration, and the number of these freezers has been increased worldwide. Ultralow-temperature refrigeration operates with a significant temperature lift and, hence, a massive decrease in energy performance. Therefore, cascade cycles based on two vapor compression single-stage cycles are traditionally used for these temperatures. This paper proposes the combination of six different cycles (single-stage with and without internal heat exchanger, vapor injection, liquid injection, and parallel compression with and without economizer) in two-stage cascades to analyze the operational and energy performance in ultralow-temperature freezers. All this leads to 42 different configurations in which the intermediate cascade temperature is optimized to maximize the coefficient of performance. Ultra-low global warming potential natural refrigerants such as R-290 (propane) and R-170 (ethane) for the cascade high- and low-temperature stage have been considered. From the thermodynamic analysis, it can be concluded that liquid and vapor injection cascade configurations are the most energy-efficient. More specifically, those containing a vapor injection in the low-temperature stage (0.89 coefficient of performance, 40 % higher than traditional configurations). Then, using an internal heat exchanger for such low temperatures is unnecessary in terms of energy performance. The optimum intermediate cascade temperature varies significantly among cycles, from -37 °C to 2 °C, substantially impacting energy performance. Parallel compression configuration improves energy performance over single-stage cycles, but not as much as multi-stage (between 20 % and 30 % lower coefficient of performance). For most of low-temperature cycles, the high-temperature stage can be based on a single-stage cycle while keeping the maximum coefficient of performance.

SELECTION OF CITATIONS
SEARCH DETAIL